39 research outputs found

    Present-day kinematics and seismic potential of the Ganzi-Yushu fault, eastern Tibetan plateau, constrained from InSAR

    Get PDF
    In recent years, earthquakes have occurred frequently on the southeastern edge of the Tibetan Plateau, and the seismic hazard is high. However, because of the remote location of the Ganzi-Yushu fault zone, no high-resolution geodetic measurements of this region have been made. The radar line-of-sight deformation field of the Ganzi-Yushu fault was obtained using seven-track ascending and descending Sentinel-A/B interferometric synthetic aperture radar (InSAR) data from 2014 to 2020. Using the InSAR and published Global Navigation Satellite System (GNSS) data, we calculated the 3D deformation field in the study area, investigated the segment-specific fault slip rate, and inverted the fault slip distribution pattern using the steepest descent method. We then evaluated the seismic hazard using the strain rate field and slip deficit rate. The main findings of this study include the following. 1) The slip rate of the Ganzi-Yushu fault gradually increases from 2.5 to 6.8 mm/yr from northwest to southeast. 2) A high-resolution strain rate map shows high-value anomalies in the Yushu and Dangjiang areas. 3) Our comprehensive analysis suggests that the seismic hazard of the Dangjiang and Dengke segments with high slip deficits cannot be ignored

    Regional Differential Information Entropy for Super-Resolution Image Quality Assessment

    Full text link
    PSNR and SSIM are the most widely used metrics in super-resolution problems, because they are easy to use and can evaluate the similarities between generated images and reference images. However, single image super-resolution is an ill-posed problem, there are multiple corresponding high-resolution images for the same low-resolution image. The similarities can't totally reflect the restoration effect. The perceptual quality of generated images is also important, but PSNR and SSIM do not reflect perceptual quality well. To solve the problem, we proposed a method called regional differential information entropy to measure both of the similarities and perceptual quality. To overcome the problem that traditional image information entropy can't reflect the structure information, we proposed to measure every region's information entropy with sliding window. Considering that the human visual system is more sensitive to the brightness difference at low brightness, we take Îł\gamma quantization rather than linear quantization. To accelerate the method, we reorganized the calculation procedure of information entropy with a neural network. Through experiments on our IQA dataset and PIPAL, this paper proves that RDIE can better quantify perceptual quality of images especially GAN-based images.Comment: 8 pages, 9 figures, 4 table

    Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission

    Get PDF
    Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha’s rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation

    Gut Microbes Reveal Pseudomonas Medicates Ingestion Preference via Protein Utilization and Cellular Homeostasis Under Feed Domestication in Freshwater Drum, Aplodinotus grunniens

    Get PDF
    With strong demand for aquatic products, as well as a rapid decrease in global fishery resources and capture fisheries, domesticating animals to provide more high-quality proteins is meaningful for humans. Freshwater drum (Aplodinotus grunniens) is widely distributed in the wild habitats of North America. However, the research on A. grunniens and the feed domestication with diets composed of artificial compounds remains unclear. In this study, a 4-month feeding domestication experiment was conducted with A. grunniens larvae to evaluate the underlying mechanism and molecular targets responsible for alternations in the ingestion performance. The results indicated that a significant increase in the final body weight was exhibited by the feed domesticated group (DOM, 114.8 g) when compared to the group that did not ingest the feed (WT, 5.3 g) as the latest version we raised From the result, the final body weight exhibited significant increase between unfavorable with the feed (WT, 5.3 g) and feed domesticated group (DOM, 114.8 g). In addition, the enzyme activity of digestive enzymes like amylase, lipase, and trypsin was increased in DOM. Genes related to appetite and perception, such as NPY4R, PYY, and LEPR, were activated in DOM. 16s rRNA gene sequencing analysis revealed that Pseudomonas sp. increased from 58.74% to 89.77% in DOM, which accounts for the dominant upregulated microbial community at the genus level, followed by Plesiomonas. Analogously, Mycobacterium, Methylocystis, and Romboutsia also accounted for the down-regulated microbes in the diversity. Transcriptome and RT-PCR analysis revealed that feed domestication significantly improved protein digestion and absorption, inhibited apoptosis by AGE-RAGE signaling, and activated extracellular matrix remodeling by relaxin signaling. Integrated analysis of the microbiome and host transcriptome revealed that Pseudomonas-mediated ingestion capacity, protein utilization, and cellular homeostasis might be the underlying mechanism under feed domestication. These results indicate Pseudomonas and its key genes relating to food ingestion and digestion could serve as the molecular targets for feed domestication and sustainable development in A. grunniens

    Visible and Infrared Nanocrystal-Based Light Modulator with CMOS Compatible Bias Operation

    Get PDF
    Nanocrystals are now established light sources, and as synthesis and device integration have gained maturity, new functionalities can now be considered. So far, the emitted light from a nanocrystal population remains mostly driven by the structural properties (composition, size, and shape) of the particle, and only limited postsynthesis tunability has been demonstrated. Here, we explore the design of light amplitude modulators using a nanocrystal-based light-emitting diode operated under reverse bias. We demonstrate strong photoluminescence modulations for devices operating in the visible and near-telecom wavelengths using low bias operations (<3 V) compatible with conventional electronics. For a visible device based on 2D nanoplatelets, we demonstrate that the photoluminescence quenching is driven by the field-induced change of nonradiative decay rate and that the field is less involved than the particle charging. This work demonstrates that a simple diode stack can combine several functionalities (light-emitting diode, detector, and light modulator) simply by selecting the driving bias.The project is supported by ERC starting grant blackQD (Grant No. 756225) and Ne2Dem (Grant No. 853049). We acknowledge the use of clean-room facilities from the “Centrale de Proximité Paris-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (grant dopQD). This work is supported by French state funds managed by the ANR within the Investissements d’Avenir program under reference ANR-11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE and also by the grant IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), and NITQuantum (ANR-20-ASTR-0008–01), Bright (ANR-21-CE24–0012–02), MixDferro (ANR-21-CE09–0029) and QuickTera (ANR-22-CE09-0018). J.I.C. acknowledges support from UJI-B2021-06 and MICINN PID2021-128659NB-I00. H.Z. thanks China Scholarship Council for Ph.D. funding

    Stellar Populations in the Central 0.5 pc of Our Galaxy III: The Dynamical Sub-structures

    Full text link
    We measure the 3D kinematic structures of the young stars within the central 0.5 parsec of our Galactic Center using the 10 m telescopes of the W.~M.~Keck Observatory over a time span of 25 years. Using high-precision measurements of positions on the sky, and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant sub-structures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; a second, almost edge-on plane of 10 candidate stars oriented East-West on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each sub-structure and find that the clockwise disk has = 0.39 and the edge-on plane has = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially-variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk.Comment: 41 pages, 26 figures, 13 tables, 2 appendices. Accepted for publication in Ap

    Reconstructing Floorplans from Point Clouds Using GAN

    No full text
    This paper proposed a method for reconstructing floorplans from indoor point clouds. Unlike existing corner and line primitive detection algorithms, this method uses a generative adversarial network to learn the complex distribution of indoor layout graphics, and repairs incomplete room masks into more regular segmentation areas. Automatic learning of the structure information of layout graphics can reduce the dependence on geometric priors, and replacing complex optimization algorithms with Deep Neural Networks (DNN) can improve the efficiency of data processing. The proposed method can retain more shape information from the original data and improve the accuracy of the overall structure details. On this basis, the method further used an edge optimization algorithm to eliminate pixel-level edge artifacts that neural networks cannot perceive. Finally, combined with the constraint information of the overall layout, the method can generate compact floorplans with rich semantic information. Experimental results indicated that the algorithm has robustness and accuracy in complex 3D indoor datasets; its performance is competitive with those of existing methods
    corecore